Received: 2024-08-11  |  Accepted: 2024-10-22  |  Published: 2024-12-30

Title

Methanization of fish waste for the production of renewable energy: prospects for traditionally fried Moroccan fish


Abstract

Methanization, also known as anaerobic digestion, is an innovative and environmentally friendly approach that reduces and adds value to harmful bio-organic waste. The valorisation of fish waste, especially from traditional fish farming in Morocco, can be achieved by converting this type of waste into biogas, making it a renewable energy source with no ecological impact. In this article, we discuss the theoretical basis of methanization, the different reactor technologies available, the recent advances in the field and the potential uses of the biogas produced. It highlights the benefits of anaerobic digestion of bio-organic waste and the potential applications for fish waste to improve the methanization process and maximise the environmental and energy benefits.


Keywords

renewable energy, anaerobic digestion, waste, valorization, biogas, methane, environment, fish waste


JEL classifications

O31 , O32 , O44


URI

http://jssidoi.org/ird/article/176


DOI


Pages

45-53


Funding

This research was supported by the project "Cluster for innovative energy", which has received funding from the European Union's Horizon Europe programme - Marie Sklodowska-Curie Actions - Staff Exchanges, "HORIZON-MSCA-2022-SE-01 Call, under Grant Agreement Number 101129820

This is an open access issue and all published articles are licensed under a
Creative Commons Attribution 4.0 International License

Authors

El Boutalbi, Yousra
Sidi Mohamed Ben Abdellah University, Fez, Morocco http://www.usmba.ac.ma
Articles by this author in: CrossRef |  Google Scholar

Chiki, Zineb
Sidi Mohamed Ben Abdellah University, Fez, Morocco http://www.usmba.ac.ma
Articles by this author in: CrossRef |  Google Scholar

Jafrane, Chaimaa
Sidi Mohamed Ben Abdellah University, Fez, Morocco http://www.usmba.ac.ma
Articles by this author in: CrossRef |  Google Scholar

Hazm, Jamal Eddine
Sidi Mohamed Ben Abdellah University, Fez, Morocco http://www.usmba.ac.ma
Articles by this author in: CrossRef |  Google Scholar

El Amrani El Idrissi, Najiba
Sidi Mohamed Ben Abdellah University, Fez, Morocco http://www.usmba.ac.ma
Articles by this author in: CrossRef |  Google Scholar

Katina, Joana
Vilnius Gediminas Technical University, Vilnius, Lithuania https://vilniustech.lt
Vilnius University, Vilnius, Lithuania https://www.vu.lt
Articles by this author in: CrossRef |  Google Scholar

Idrissi Kandri, Noureddine
Sidi Mohamed Ben Abdellah University, Fez, Morocco http://www.usmba.ac.ma
Articles by this author in: CrossRef |  Google Scholar

Journal title

Insights into Regional Development

Volume

6


Number

4


Issue date

December 2024


Issue DOI


ISSN

ISSN 2345-0282 (online)


Publisher

VšĮ Entrepreneurship and Sustainability Center, Vilnius, Lithuania

Cited

Google Scholar

Article views & downloads

HTML views: 443  |  PDF downloads: 175

References


Adekunle, K. F., & Okolie, J. A. (2015). A Review of Biochemical Process of Anaerobic Digestion. Advances in Bioscience and Biotechnology, 06(03), 205–212. https://doi.org/10.4236/abb.2015.63020

Search via ReFindit


Atelge, M.R., Krisa, D., Kumar, G. et al. (2020). Biogas Production from Organic Waste: Recent Progress and Perspectives. Waste Biomass Valor 11, 1019-1040. https://doi.org/10.1007/s12649-018-00546-0

Search via ReFindit


Barbot, Y.N, Al-Ghaili, H, & Benz, R. (2016). A Review on the Valorization of Macroalgal Wastes for Biomethane Production. Marine Drugs, 14(6), 120. https://doi.org/10.3390/md14060120

Search via ReFindit


Bharathiraja, B. T., Sudharsana, J., Jayamuthunagai, R., Praveenkumar, S. Chozhavendhan, & Iyyappan, J. (2018). Biogas Production – A Review on Composition, Fuel Properties, Feed Stock and Principles of Anaerobic Digestion. Renewable and Sustainable Energy Reviews 90, 570-82. https://doi.org/10.1016/j.rser.2018.03.093

Search via ReFindit


Bouallagui, H., Touhami, Y., Ben Cheikh, R., & Hamdi, M. (2005). Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry, 40(3–4), 989–995. https://doi.org/10.1016/j.procbio.2004.03.007

Search via ReFindit


Boyd, C. E., Abramo, L. R. D., Glencross, B. D., Huyben, D. C., Juarez, L. M., Lockwood, G. S., Aaron A. Mcnevin, A. A., Tacon, A. G. J., Teletchea, F., & Tomasso Jr., J. R. (2020). Achieving Sustainable Aquaculture: Historical and Current Perspectives and Future Needs and Challenges, Journal of World Aquaculture Society, 51(3), 578-633. https://doi.org/10.1111/jwas.12714

Search via ReFindit


Cadavid-Rodríguez, L.S., Vargas-Muñoz, M.A., Plácido, J. (2019). Biomethane from fish waste as a source of renewable energy for artisanal fishing communities. Sustainable Energy Technologies and Assessments, 34, 110-15. https://doi.org/10.1016/j.seta.2019.05.006

Search via ReFindit


Chandra, R., Castillo-Zacarias, C., Delgado, P., & Parra-Saldívar, R. (2018). A biorefinery approach for dairy wastewater treatment and product recovery towards establishing a biorefinery complexity index. Journal of Cleaner Production, 183, 1184-1196. https://doi.org/10.1016/j.jclepro.2018.02.124

Search via ReFindit


Collet, P., Flottes, E., AFavre, A., Raynal, L., Pierre, H., Capela, S., & Peregrina, C. (2017). Techno-Economic and Life Cycle Assessment of Methane Production via Biogas Upgrading and Power to Gas Technology. Applied Energy, 192, 282-295. https://doi.org/10.1016/j.apenergy.2016.08.181

Search via ReFindit


Dinçer, T. (2017). An Overview of the Seafood Consumption and Processing Sector in Some Mediterranean Countries. Mediterranean Fisheries ans Aquaculture Research, 23–30. https://dergipark.org.tr/en/download/article-file/410650

Search via ReFindit


Eiroa, M. J. C., Costa, M. M., Alves, C., Kennes, & M. C. Veiga. (2012). Evaluation of the Biomethane Potential of Solid Fish Waste. Waste Management, 32(7), 1347-52. https://doi.org/10.1016/j.wasman.2012.03.020

Search via ReFindit


El Mahrad, B., Abalansa, S., Newton, A., Icely, J. D., Snoussi, M., & Kacimi, I. (2020). Social-Environmental Analysis for the Management of Coastal Lagoons in North Africa. Frontiers in Environmental Science, 8. https://doi.org/10.3389/fenvs.2020.00037

Search via ReFindit


Esposito, G., Frunzo, L., Panico, A., & Pirozzi, F. (2012). Enhanced bio-methane production from co-digestion of different organic wastes. Environmental Technology, 33(24), 2733-2740. https://doi.org/10.1080/09593330.2012.676077

Search via ReFindit


Hashemi, B., Sarker, S., Lamb, J. J., & Lien, K. M. (2021). Yield improvements in anaerobic digestion of lignocellulosic feedstocks. Journal of Cleaner Production, 288, 125447. https://doi.org/10.1016/j.jclepro.2020.125447

Search via ReFindit


Hernandez, J. E., & R. G. J. Edyvean. (2008). Inhibition of Biogas Production and Biodegradability by Substituted Phenolic Compounds in Anaerobic Sludge. Journal of Hazardous Materials, 160(1), 160, 20-28. https://doi.org/10.1016/j.jhazmat.2008.02.075

Search via ReFindit


Ingabire, H., Ntambara, B., & Mazimpaka, E. (2023). Characterisation and analysis of fish waste as feedstock for biogas production. International Journal of Low-Carbon Technologies, 18, 212-217, https://doi.org/10.1093/ijlct/ctac135

Search via ReFindit


Ivanovs, K., Spalvins, K., & Blumberga, D. (2018). Approach for modelling anaerobic digestion processes of fish waste, Energy Procedia, 147, 390-396, https://doi.org/10.1016/j.egypro.2018.07.108

Search via ReFindit


Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Biogas Production and Applications in the Sustainable Energy Transition. Journal of Energy, 2022, 1–43. https://doi.org/10.1155/2022/8750221

Search via ReFindit


Kapoor, R., Ghosh, P., Kumar, M., & Vijay, V. K. (2019). Evaluation of biogas upgrading technologies and future perspectives: a review. Environmental Science and Pollution Research, 26(12), 11631–11661. https://doi.org/10.1007/s11356-019-04767-1

Search via ReFindit


Li, R., Chen, S. & Li, X. (2010). Biogas Production from Anaerobic Co-digestion of Food Waste with Dairy Manure in a Two-Phase Digestion System. Appl Biochem Biotechnol 160, 643–654. https://doi.org/10.1007/s12010-009-8533-z

Search via ReFindit


Liu, Siqing. (2018). Conversion of Biomass to Ethanol by Other Organisms. https://doi.org/10.1002/9780470750025.ch14

Search via ReFindit


Lopes, Carla, Luis T. Antelo, Amaya Franco-uría, Antonio A. Alonso, and Ricardo Pérez-martín. (2015). “Valorisation of Fish By-Products against Waste Management Treatments – Comparison of Environmental Impacts.” Waste Management 46:103–12. https://doi.org/10.1016/j.wasman.2015.08.017

Search via ReFindit


Mata-Alvarez, J., Macé, S., & Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 3-16. 00023-7 https://doi.org/10.1016/S0960-8524(00)

Search via ReFindit


Mustafi, N.N., Agarwal, A.K. (2020). Biogas for Transport Sector: Current Status, Barriers, and Path Forward for Large-Scale Adaptation. In: Singh, A., Sharma, Y., Mustafi , N., Agarwal, A. (eds) Alternative Fuels and Their Utilisation Strategies in Internal Combustion Engines. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0418-1_13

Search via ReFindit


Nawaz, A., Li, E., Irshad, S., Xiong, Z., & Xiong, H. (2020). Valorisation of fisheries by-products: Challenges and technical concerns to food industry. Trends in Food Science & Technology, 99, 34-43. https://doi.org/10.1016/j.tifs.2020.02.022

Search via ReFindit


Paranjpe, A., Saxena, S., & Jain, P. (2023). A Review on Performance Improvement of Anaerobic Digestion Using Co-Digestion of Food Waste and Sewage Sludge. Journal of Environmental Management, 338, 117733. https://doi.org/10.1016/j.jenvman.2023.117733

Search via ReFindit


Qi, M., Liu, Y., He, T., Yin, L., Shu, Ch-M., & Moon, II. (2022). System perspective on cleaner technologies for renewable methane production and utilisation towards carbon neutrality: Principles, techno-economics, and carbon footprints. Fuel, 327, 125130. https://doi.org/10.1016/j.fuel.2022.125130

Search via ReFindit


Ramachandran, A., Rustum, R, & Adeloye A.J. (2019). Review of Anaerobic Digestion Modeling and Optimisation Using Nature-Inspired Techniques. Processes. (12), 953. https://doi.org/10.3390/pr7120953

Search via ReFindit


Rashama, C., Ijoma, G., & Matambo, T. (2019). Biogas generation from by-products of edible oil processing: a review of opportunities, challenges and strategies. Biomass Conversion and Biorefinery, 9(4), 803–826. https://doi.org/10.1007/s13399-019-00385-6

Search via ReFindit


Rudovica, V., Rotter, A., Gaudêncio, S. P., Novoveská et al. (2021). Valorization of Marine Waste: Use of Industrial By-Products and Beach Wrack Towards the Production of High Added-Value Products. Frontiers in Marine Science, 8. https://doi.org/10.3389/fmars.2021.723333

Search via ReFindit


Sánchez, E., Borja, R., Weiland, P. et al. (2020). Effect of temperature and pH on the kinetics of methane production, organic nitrogen and phosphorus removal in the batch anaerobic digestion process of cattle manure. Bioprocess Engineering, 22, 247-252 (2000). https://doi.org/10.1007/s004490050727

Search via ReFindit


Scroggins, R. E., Fry, J.P., Brown, M.T., Neff, R.A., Asche, F., Anderson, J.L., & Love, D.C. (2022). Renewable Energy in Fisheries and Aquaculture: Case Studies from the United States. Journal of Cleaner Production 376, 134153. https://doi.org/10.1016/j.jclepro.2022.134153

Search via ReFindit


Wang, X., Li, C., Lam, C. H., Subramanian, K., Qin, Z.-H., Mou, J.-H., Jin, M., Chopra, S. S., Singh, V., Ok, Y. S., Yan, J., Li, H.-Y., & Lin, C. S. K. (2022). Emerging waste valorisation techniques to moderate the hazardous impacts, and their path towards sustainability. Journal of Hazardous Materials, 423, 127023. https://doi.org/10.1016/j.jhazmat.2021.127023

Search via ReFindit


Zhang, W., Lang, Q., Wu, S., Li, W., Bah, H., & Dong, R. (2014). Anaerobic digestion characteristics of pig manures depending on various growth stages and initial substrate concentrations in a scaled pig farm in Southern China. Bioresource Technology, 156, 63–69. https://doi.org/10.1016/j.biortech.2014.01.013

Search via ReFindit