Received: 2024-05-11  |  Accepted: 2024-09-05  |  Published: 2024-09-30

Title

A comprehensive review of integrated energy storage batteries in renewable energy stations: technological advancements, challenges and future trends


Abstract

The integration of energy storage batteries into renewable energy stations is a crucial development in the quest for sustainable and reliable energy solutions. This review provides a comprehensive analysis of this integration, detailing the types of energy storage batteries, including lithium-ion, lead-acid, and flow batteries, as well as their respective benefits and limitations. The study addresses significant challenges such as the intermittency of renewable energy sources, battery degradation and lifetime, cost and efficiency issues, and technical challenges. It also explores potential solutions to these challenges. Additionally, future directions are discussed, focusing on emerging battery technologies and smart grid system integration. This paper highlights the essential role of energy storage batteries in overcoming the intermittency of renewable sources and ensuring a stable and efficient energy supply.


Keywords

energy storage, renewable energy, technical challenges, smart grid integration, sustainable energy


JEL classifications

O33 , Q55


URI

http://jssidoi.org/ird/article/170


DOI


Pages

40-52


Funding

The research leading to these results has received funding from the project titled "Cluster for innovative energy" in the frame of the program "HORIZON-MSCA-2022-SE-01" under the Grant agreement number 1011298205.

This is an open access issue and all published articles are licensed under a
Creative Commons Attribution 4.0 International License

Authors

Redouani, Assia
Sidi Mohamed Ben Abdellah University, Fez, Morocco http://www.usmba.ac.ma
Articles by this author in: CrossRef |  Google Scholar

Ikmel, Ghita
Sidi Mohamed Ben Abdellah University, Fez, Morocco http://www.usmba.ac.ma
Articles by this author in: CrossRef |  Google Scholar

Zared, Kamal
Sidi Mohamed Ben Abdellah University, Fez, Morocco http://www.usmba.ac.ma
Articles by this author in: CrossRef |  Google Scholar

Čyras, Giedrius
Vilnius Gediminas Technical University, Vilnius, Lithuania https://vilniustech.lt
Articles by this author in: CrossRef |  Google Scholar

El Amrani El Idrissi, Najiba
Sidi Mohamed Ben Abdellah University, Fez, Morocco http://www.usmba.ac.ma
Articles by this author in: CrossRef |  Google Scholar

Journal title

Insights into Regional Development

Volume

6


Number

3


Issue date

September 2024


Issue DOI


ISSN

ISSN 2345-0282 (online)


Publisher

VšĮ Entrepreneurship and Sustainability Center, Vilnius, Lithuania

Cited

Google Scholar

Article views & downloads

HTML views: 867  |  PDF downloads: 249

References


Abazari, A., Soleymani, M. M., Babaei, M., Ghafouri, M., Monsef, H., & Beheshti, M. T. H. (2020). High penetrated renewable energy sources‐based AOMPC for microgrid’s frequency regulation during weather changes, time‐varying parameters and generation unit collapse. IET Generation, Transmission & Distribution, 14(22), 5164–5182. https://doi.org/10.1049/iet-gtd.2020.0074

Search via ReFindit


Ali, A., Audi, M., & Roussel, Y. (2021). Natural resources depletion, renewable energy consumption and environmental degradation: A comparative analysis of developed and developing world. International Journal of Energy Economics and Policy, 11(3), 251–260. https://doi.org/10.32479/ijeep.11008

Search via ReFindit


Alimardani, M., & Narimani, M. (2021). A New Energy Storage System Configuration to Extend Li-Ion Battery Lifetime for a Household. IEEE Canadian Journal of Electrical and Computer Engineering, 44(2), 171–178. https://doi.org/10.1109/icjece.2020.3034265

Search via ReFindit


Arafat, Y., Azhar, M. R., Zhong, Y., Abid, H. R., Tadé, M. O., & Shao, Z. (2021). Advances in Zeolite Imidazolate Frameworks (ZIFs) Derived Bifunctional Oxygen Electrocatalysts and Their Application in Zinc–Air Batteries. Advanced Energy Materials, 11(26), 2100514. https://doi.org/10.1002/aenm.202100514

Search via ReFindit


Basit, M. A., Dilshad, S., Badar, R., & Sami Ur Rehman, S. M. (2020). Limitations, challenges, and solution approaches in grid‐connected renewable energy systems. International Journal of Energy Research, 44(6), 4132–4162. https://doi.org/10.1002/er.5033

Search via ReFindit


Behabtu, H. A., Messagie, M., Coosemans, T., Berecibar, M., Anlay Fante, K., Kebede, A. A., & Mierlo, J. V. (2020). A review of energy storage technologies’ application potentials in renewable energy sources grid integration. Sustainability, 12(24), 10511. https://doi.org/10.3390/su122410511

Search via ReFindit


Calero, F., Cañizares, C. A., Bhattacharya, K., Anierobi, C., Calero, I., de Souza, M. F. Z., Farrokhabadi, M., Guzman, N. S., Mendieta, W., & Peralta, D. (2022). A review of modeling and applications of energy storage systems in power grids. Proceedings of the IEEE, 111(7), 806–831. 10.1109/JPROC.2022.3158607

Search via ReFindit


Collath, N., Tepe, B., Englberger, S., Jossen, A., & Hesse, H. (2022). Aging aware operation of lithium-ion battery energy storage systems: A review. Journal of Energy Storage, 55, 105634. https://doi.org/10.1016/j.est.2022.105634

Search via ReFindit


Datta, U., Kalam, A., & Shi, J. (2021). A review of key functionalities of battery energy storage system in renewable energy integrated power systems. Energy Storage, 3(5), e224. https://doi.org/10.1002/est2.224

Search via ReFindit


Diaz, L. B., Hales, A., Marzook, M. W., Patel, Y., & Offer, G. (2022). Measuring irreversible heat generation in lithium-ion batteries: An experimental methodology. Journal of The Electrochemical Society, 169(3), 030523. 10.1149/1945-7111/ac5ada

Search via ReFindit


Emad, D., El-Hameed, M. A., & El-Fergany, A. A. (2021). Optimal techno-economic design of hybrid PV/wind system comprising battery energy storage: Case study for a remote area. Energy Conversion and Management, 249, 114847. https://doi.org/10.1016/j.enconman.2021.114847

Search via ReFindit


Emrani, A., & Berrada, A. (2024). A comprehensive review on techno-economic assessment of hybrid energy storage systems integrated with renewable energy. Journal of Energy Storage, 84, 111010. https://doi.org/10.1016/j.est.2024.111010

Search via ReFindit


Etukudoh, E. A., Fabuyide, A., Ibekwe, K. I., Sonko, S., & Ilojianya, V. I. (2024). Electrical engineering in renewable energy systems: A review of design and integration challenges. Engineering Science & Technology Journal, 5(1), 231–244. https://doi.org/10.51594/estj.v5i1.746

Search via ReFindit


Falchetta, G., & Noussan, M. (2021). Electric vehicle charging network in Europe: An accessibility and deployment trends analysis. Transportation Research Part D: Transport and Environment, 94, 102813. https://doi.org/10.1016/j.trd.2021.102813

Search via ReFindit


Foley, A. M., McIlwaine, N., Morrow, D. J., Hayes, B. P., Zehir, M. A., Mehigan, L., Papari, B., Edrington, C. S., & Baran, M. (2020). A critical evaluation of grid stability and codes, energy storage and smart loads in power systems with wind generation. Energy, 205, 117671. https://doi.org/10.1016/j.energy.2020.117671

Search via ReFindit


Guarnieri, M. (2022). Before Lithium-Ion Batteries: The Age of Primary Cells [Historical]. IEEE Industrial Electronics Magazine, 16(2), 73–77. https://doi.org/10.1109/mie.2022.3166270

Search via ReFindit


Halkos, G. E., & Gkampoura, E.-C. (2020). Reviewing usage, potentials, and limitations of renewable energy sources. Energies, 13(11), 2906. https://doi.org/10.3390/en13112906

Search via ReFindit


He, S., Wang, S., Chen, H., Hou, X., & Shao, Z. (2020). A new dual-ion hybrid energy storage system with energy density comparable to that of ternary lithium ion batteries. Journal of Materials Chemistry A, 8(5), 2571–2580. 10.1039/C9TA12660K

Search via ReFindit


Hu, J., Koning, V., Bosshard, T., Harmsen, R., Crijns-Graus, W., Worrell, E., & van den Broek, M. (2023). Implications of a Paris-proof scenario for future supply of weather-dependent variable renewable energy in Europe. Advances in Applied Energy, 10, 100134. https://doi.org/10.1016/j.adapen.2023.100134

Search via ReFindit


Islam, S., Iqbal, A., Marzband, M., Khan, I., & Al-Wahedi, A. M. (2022). State-of-the-art vehicle-to-everything mode of operation of electric vehicles and its future perspectives. Renewable and Sustainable Energy Reviews, 166, 112574. https://doi.org/10.1016/j.rser.2022.112574

Search via ReFindit


Kay Lup, A. N. (2022). Green and Sustainable Battery Materials: Past, Present, and Future. In C. M. Hussain & P. Di Sia (Eds.), Handbook of Smart Materials, Technologies, and Devices (pp. 2337–2365). Springer International Publishing. https://doi.org/10.1007/978-3-030-84205-5_99

Search via ReFindit


Kebede, A. A., Coosemans, T., Messagie, M., Jemal, T., Behabtu, H. A., Van Mierlo, J., & Berecibar, M. (2021). Techno-economic analysis of lithium-ion and lead-acid batteries in stationary energy storage application. Journal of Energy Storage, 40, 102748. https://doi.org/10.1016/j.est.2021.102748

Search via ReFindit


Khezri, R., Motlagh, S. R., Etesami, M., Mohamad, A. A., Mahlendorf, F., Somwangthanaroj, A., & Kheawhom, S. (2022). Stabilizing zinc anodes for different configurations of rechargeable zinc-air batteries. Chemical Engineering Journal, 449, 137796. https://doi.org/10.1016/j.cej.2022.137796

Search via ReFindit


Li, J., Zhang, Y., Shang, R., Cheng, C., Cheng, Y., Xing, J., Wei, Z., & Zhao, Y. (2021). Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability. Energy Storage Materials, 43, 143–157. https://doi.org/10.1016/j.ensm.2021.08.046

Search via ReFindit


Li, W., Lee, S., & Manthiram, A. (2020). High‐Nickel NMA: A Cobalt‐Free Alternative to NMC and NCA Cathodes for Lithium‐Ion Batteries. Advanced Materials, 32(33), 2002718. https://doi.org/10.1002/adma.202002718

Search via ReFindit


Lu, S., Jiang, J., Yang, H., Zhang, Y.-J., Pei, D.-N., Chen, J.-J., & Yu, Y. (2020). Phase Engineering of Iron–Cobalt Sulfides for Zn–Air and Na–Ion Batteries. ACS Nano, 14(8), 10438–10451. https://doi.org/10.1021/acsnano.0c04309

Search via ReFindit


Mallapragada, D. S., Sepulveda, N. A., & Jenkins, J. D. (2020). Long-run system value of battery energy storage in future grids with increasing wind and solar generation. Applied Energy, 275, 115390. https://doi.org/10.1016/j.apenergy.2020.115390

Search via ReFindit


Mlilo, N., Brown, J., & Ahfock, T. (2021). Impact of intermittent renewable energy generation penetration on the power system networks – A review. Technology and Economics of Smart Grids and Sustainable Energy, 6(1), 25. https://doi.org/10.1007/s40866-021-00123-w

Search via ReFindit


Mojumder, M. R. H., Ahmed Antara, F., Hasanuzzaman, M., Alamri, B., & Alsharef, M. (2022). Electric vehicle-to-grid (V2G) technologies: Impact on the power grid and battery. Sustainability, 14(21), 13856. https://doi.org/10.3390/su142113856

Search via ReFindit


Mongird, K., Viswanathan, V., Balducci, P., Alam, J., Fotedar, V., Koritarov, V., & Hadjerioua, B. (2020). An evaluation of energy storage cost and performance characteristics. Energies, 13(13), 3307. https://doi.org/10.3390/en13133307

Search via ReFindit


Nyamathulla, S., & Dhanamjayulu, C. (2024). A review of battery energy storage systems and advanced battery management system for different applications: Challenges and recommendations. Journal of Energy Storage, 86, 111179. https://doi.org/10.1016/j.est.2024.111179

Search via ReFindit


Oyekale, J., Petrollese, M., Tola, V., & Cau, G. (2020). Impacts of renewable energy resources on effectiveness of grid-integrated systems: Succinct review of current challenges and potential solution strategies. Energies, 13(18), 4856. https://doi.org/10.3390/en13184856

Search via ReFindit


Petrov, M. M., Modestov, A. D., Konev, D. V., Antipov, A. E., Loktionov, P. A., Pichugov, R. D., Kartashova, N. V., Glazkov, A. T., Abunaeva, L. Z., Andreev, V. N., & Vorotyntsev, M. A. (2021). Redox flow batteries: role in modern electric power industry and comparative characteristics of the main types. Russian Chemical Reviews, 90(6), 677–702. https://doi.org/10.1070/rcr4987

Search via ReFindit


Pommeret, A., & Schubert, K. (2022). Optimal energy transition with variable and intermittent renewable electricity generation. Journal of Economic Dynamics and Control, 134, 104273. https://doi.org/10.1016/j.jedc.2021.104273

Search via ReFindit


Rahman, M. M., Oni, A. O., Gemechu, E., & Kumar, A. (2020). Assessment of energy storage technologies: A review. Energy Conversion and Management, 223, 113295. https://doi.org/10.1016/j.enconman.2020.113295

Search via ReFindit


Rajamand, S. (2022). Analysis of effect of physical parameters on the performance of lead acid battery as efficient storage unit in power systems using new finite-element-method-based model. Journal of Energy Storage, 47, 103620. https://doi.org/10.1016/j.est.2021.103620

Search via ReFindit


Ravada, B. R., Tummuru, N. R., & Ande, B. N. L. (2021). Photovoltaic-Wind and Hybrid Energy Storage Integrated Multisource Converter Configuration-Based Grid-Interactive Microgrid. IEEE Transactions on Industrial Electronics, 68(5), 4004–4013. https://doi.org/10.1109/tie.2020.2984437

Search via ReFindit


Sahoo, M., & Sethi, N. (2021). The intermittent effects of renewable energy on ecological footprint: Evidence from developing countries. Environmental Science and Pollution Research, 28(40), 56401–56417. https://doi.org/10.1007/s11356-021-14600-3

Search via ReFindit


Shafique, M., Akbar, A., Rafiq, M., Azam, A., & Luo, X. (2023). Global material flow analysis of end-of-life of lithium nickel manganese cobalt oxide batteries from battery electric vehicles. Waste Management & Research: The Journal for a Sustainable Circular Economy, 41(2), 376–388. https://doi.org/10.1177/0734242X221127175

Search via ReFindit


Shazon, M. N. H., & Jawad, A. (2022). Frequency control challenges and potential countermeasures in future low-inertia power systems: A review. Energy Reports, 8, 6191–6219. https://doi.org/10.1016/j.egyr.2022.04.063

Search via ReFindit


Shi, Z., Yao, W., Li, Z., Zeng, L., Zhao, Y., Zhang, R., Tang, Y., & Wen, J. (2020). Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions. Applied Energy, 278, 115733. https://doi.org/10.1016/j.apenergy.2020.115733

Search via ReFindit


Siti, M. W., Mbungu, N. T., Tungadio, D. H., Banza, B. B., & Ngoma, L. (2022). Application of load frequency control method to a multi-microgrid with energy storage system. Journal of Energy Storage, 52, 104629. https://doi.org/10.1016/j.est.2022.104629

Search via ReFindit


Tahir, M. F., Haoyong, C., & Guangze, H. (2021). A comprehensive review of 4E analysis of thermal power plants, intermittent renewable energy and integrated energy systems. Energy Reports, 7, 3517–3534. https://doi.org/10.1016/j.egyr.2021.06.006

Search via ReFindit


Tan, K. M., Babu, T. S., Ramachandaramurthy, V. K., Kasinathan, P., Solanki, S. G., & Raveendran, S. K. (2021). Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. Journal of Energy Storage, 39, 102591. https://doi.org/10.1016/j.est.2021.102591

Search via ReFindit


Vasant Kumar, R., & Sarakonsri, T. (2023). A Review of Materials and Chemistry for Secondary Batteries. In R. Kumar, K. Aifantis, & P. Hu (Eds.), Rechargeable Ion Batteries (1st ed., pp. 49–81). Wiley. https://doi.org/10.1002/9783527836703.ch3

Search via ReFindit


Wen, J., Zhao, D., & Zhang, C. (2020). An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency. Renewable Energy, 162, 1629–1648. https://doi.org/10.1016/j.renene.2020.09.055

Search via ReFindit


Xiong, R., Pan, Y., Shen, W., Li, H., & Sun, F. (2020). Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives. Renewable and Sustainable Energy Reviews, 131, 110048. https://doi.org/10.1016/j.rser.2020.110048

Search via ReFindit


Xu, X. (2024). Application and development of lead-carbon battery in electric energy storage system. Eighth International Conference on Energy System, Electricity, and Power (ESEP 2023), 137. https://doi.org/10.1117/12.3024374

Search via ReFindit


Yang, Y., Bremner, S., Menictas, C., & Kay, M. (2022). Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 167, 112671. https://doi.org/10.1016/j.rser.2022.112671

Search via ReFindit


Zhang, C., Yuan, Z., & Li, X. (2024). Designing Better Flow Batteries: An Overview on Fifty Years’ Research. ACS Energy Letters, 9(7), 3456–3473. https://doi.org/10.1021/acsenergylett.4c00773

Search via ReFindit


Zhang, L., Feng, R., Wang, W., & Yu, G. (2022). Emerging chemistries and molecular designs for flow batteries. Nature Reviews Chemistry, 6(8), 524–543. https://doi.org/10.1038/s41570-022-00394-6

Search via ReFindit


Zhang, S., Andreas, N. S., Li, R., Zhang, N., Sun, C., Lu, D., Gao, T., Chen, L., & Fan, X. (2022). Mitigating irreversible capacity loss for higher-energy lithium batteries. Energy Storage Materials, 48, 44–73. https://doi.org/10.1016/j.ensm.2022.03.004

Search via ReFindit


Zhang, Z., Ding, T., Zhou, Q., Sun, Y., Qu, M., Zeng, Z., Ju, Y., Li, L., Wang, K., & Chi, F. (2021). A review of technologies and applications on versatile energy storage systems. Renewable and Sustainable Energy Reviews, 148, 111263. https://doi.org/10.1016/j.rser.2021.111263

Search via ReFindit


Zhao, S., Guo, Z., Yan, K., Wan, S., He, F., Sun, B., & Wang, G. (2021). Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials. Energy Storage Materials, 34, 716–734. https://doi.org/10.1016/j.ensm.2020.11.008

Search via ReFindit