References
Abazari, A., Soleymani, M. M., Babaei, M., Ghafouri, M., Monsef, H., & Beheshti, M. T. H. (2020). High penetrated renewable energy sources‐based AOMPC for microgrid’s frequency regulation during weather changes, time‐varying parameters and generation unit collapse. IET Generation, Transmission & Distribution, 14(22), 5164–5182. https://doi.org/10.1049/iet-gtd.2020.0074
Search via ReFindit
Ali, A., Audi, M., & Roussel, Y. (2021). Natural resources depletion, renewable energy consumption and environmental degradation: A comparative analysis of developed and developing world. International Journal of Energy Economics and Policy, 11(3), 251–260. https://doi.org/10.32479/ijeep.11008
Search via ReFindit
Alimardani, M., & Narimani, M. (2021). A New Energy Storage System Configuration to Extend Li-Ion Battery Lifetime for a Household. IEEE Canadian Journal of Electrical and Computer Engineering, 44(2), 171–178. https://doi.org/10.1109/icjece.2020.3034265
Search via ReFindit
Arafat, Y., Azhar, M. R., Zhong, Y., Abid, H. R., Tadé, M. O., & Shao, Z. (2021). Advances in Zeolite Imidazolate Frameworks (ZIFs) Derived Bifunctional Oxygen Electrocatalysts and Their Application in Zinc–Air Batteries. Advanced Energy Materials, 11(26), 2100514. https://doi.org/10.1002/aenm.202100514
Search via ReFindit
Basit, M. A., Dilshad, S., Badar, R., & Sami Ur Rehman, S. M. (2020). Limitations, challenges, and solution approaches in grid‐connected renewable energy systems. International Journal of Energy Research, 44(6), 4132–4162. https://doi.org/10.1002/er.5033
Search via ReFindit
Behabtu, H. A., Messagie, M., Coosemans, T., Berecibar, M., Anlay Fante, K., Kebede, A. A., & Mierlo, J. V. (2020). A review of energy storage technologies’ application potentials in renewable energy sources grid integration. Sustainability, 12(24), 10511. https://doi.org/10.3390/su122410511
Search via ReFindit
Calero, F., Cañizares, C. A., Bhattacharya, K., Anierobi, C., Calero, I., de Souza, M. F. Z., Farrokhabadi, M., Guzman, N. S., Mendieta, W., & Peralta, D. (2022). A review of modeling and applications of energy storage systems in power grids. Proceedings of the IEEE, 111(7), 806–831. 10.1109/JPROC.2022.3158607
Search via ReFindit
Collath, N., Tepe, B., Englberger, S., Jossen, A., & Hesse, H. (2022). Aging aware operation of lithium-ion battery energy storage systems: A review. Journal of Energy Storage, 55, 105634. https://doi.org/10.1016/j.est.2022.105634
Search via ReFindit
Datta, U., Kalam, A., & Shi, J. (2021). A review of key functionalities of battery energy storage system in renewable energy integrated power systems. Energy Storage, 3(5), e224. https://doi.org/10.1002/est2.224
Search via ReFindit
Diaz, L. B., Hales, A., Marzook, M. W., Patel, Y., & Offer, G. (2022). Measuring irreversible heat generation in lithium-ion batteries: An experimental methodology. Journal of The Electrochemical Society, 169(3), 030523. 10.1149/1945-7111/ac5ada
Search via ReFindit
Emad, D., El-Hameed, M. A., & El-Fergany, A. A. (2021). Optimal techno-economic design of hybrid PV/wind system comprising battery energy storage: Case study for a remote area. Energy Conversion and Management, 249, 114847. https://doi.org/10.1016/j.enconman.2021.114847
Search via ReFindit
Emrani, A., & Berrada, A. (2024). A comprehensive review on techno-economic assessment of hybrid energy storage systems integrated with renewable energy. Journal of Energy Storage, 84, 111010. https://doi.org/10.1016/j.est.2024.111010
Search via ReFindit
Etukudoh, E. A., Fabuyide, A., Ibekwe, K. I., Sonko, S., & Ilojianya, V. I. (2024). Electrical engineering in renewable energy systems: A review of design and integration challenges. Engineering Science & Technology Journal, 5(1), 231–244. https://doi.org/10.51594/estj.v5i1.746
Search via ReFindit
Falchetta, G., & Noussan, M. (2021). Electric vehicle charging network in Europe: An accessibility and deployment trends analysis. Transportation Research Part D: Transport and Environment, 94, 102813. https://doi.org/10.1016/j.trd.2021.102813
Search via ReFindit
Foley, A. M., McIlwaine, N., Morrow, D. J., Hayes, B. P., Zehir, M. A., Mehigan, L., Papari, B., Edrington, C. S., & Baran, M. (2020). A critical evaluation of grid stability and codes, energy storage and smart loads in power systems with wind generation. Energy, 205, 117671. https://doi.org/10.1016/j.energy.2020.117671
Search via ReFindit
Guarnieri, M. (2022). Before Lithium-Ion Batteries: The Age of Primary Cells [Historical]. IEEE Industrial Electronics Magazine, 16(2), 73–77. https://doi.org/10.1109/mie.2022.3166270
Search via ReFindit
Halkos, G. E., & Gkampoura, E.-C. (2020). Reviewing usage, potentials, and limitations of renewable energy sources. Energies, 13(11), 2906. https://doi.org/10.3390/en13112906
Search via ReFindit
He, S., Wang, S., Chen, H., Hou, X., & Shao, Z. (2020). A new dual-ion hybrid energy storage system with energy density comparable to that of ternary lithium ion batteries. Journal of Materials Chemistry A, 8(5), 2571–2580. 10.1039/C9TA12660K
Search via ReFindit
Hu, J., Koning, V., Bosshard, T., Harmsen, R., Crijns-Graus, W., Worrell, E., & van den Broek, M. (2023). Implications of a Paris-proof scenario for future supply of weather-dependent variable renewable energy in Europe. Advances in Applied Energy, 10, 100134. https://doi.org/10.1016/j.adapen.2023.100134
Search via ReFindit
Islam, S., Iqbal, A., Marzband, M., Khan, I., & Al-Wahedi, A. M. (2022). State-of-the-art vehicle-to-everything mode of operation of electric vehicles and its future perspectives. Renewable and Sustainable Energy Reviews, 166, 112574. https://doi.org/10.1016/j.rser.2022.112574
Search via ReFindit
Kay Lup, A. N. (2022). Green and Sustainable Battery Materials: Past, Present, and Future. In C. M. Hussain & P. Di Sia (Eds.), Handbook of Smart Materials, Technologies, and Devices (pp. 2337–2365). Springer International Publishing. https://doi.org/10.1007/978-3-030-84205-5_99
Search via ReFindit
Kebede, A. A., Coosemans, T., Messagie, M., Jemal, T., Behabtu, H. A., Van Mierlo, J., & Berecibar, M. (2021). Techno-economic analysis of lithium-ion and lead-acid batteries in stationary energy storage application. Journal of Energy Storage, 40, 102748. https://doi.org/10.1016/j.est.2021.102748
Search via ReFindit
Khezri, R., Motlagh, S. R., Etesami, M., Mohamad, A. A., Mahlendorf, F., Somwangthanaroj, A., & Kheawhom, S. (2022). Stabilizing zinc anodes for different configurations of rechargeable zinc-air batteries. Chemical Engineering Journal, 449, 137796. https://doi.org/10.1016/j.cej.2022.137796
Search via ReFindit
Li, J., Zhang, Y., Shang, R., Cheng, C., Cheng, Y., Xing, J., Wei, Z., & Zhao, Y. (2021). Recent advances in lithium-ion battery separators with reversible/irreversible thermal shutdown capability. Energy Storage Materials, 43, 143–157. https://doi.org/10.1016/j.ensm.2021.08.046
Search via ReFindit
Li, W., Lee, S., & Manthiram, A. (2020). High‐Nickel NMA: A Cobalt‐Free Alternative to NMC and NCA Cathodes for Lithium‐Ion Batteries. Advanced Materials, 32(33), 2002718. https://doi.org/10.1002/adma.202002718
Search via ReFindit
Lu, S., Jiang, J., Yang, H., Zhang, Y.-J., Pei, D.-N., Chen, J.-J., & Yu, Y. (2020). Phase Engineering of Iron–Cobalt Sulfides for Zn–Air and Na–Ion Batteries. ACS Nano, 14(8), 10438–10451. https://doi.org/10.1021/acsnano.0c04309
Search via ReFindit
Mallapragada, D. S., Sepulveda, N. A., & Jenkins, J. D. (2020). Long-run system value of battery energy storage in future grids with increasing wind and solar generation. Applied Energy, 275, 115390. https://doi.org/10.1016/j.apenergy.2020.115390
Search via ReFindit
Mlilo, N., Brown, J., & Ahfock, T. (2021). Impact of intermittent renewable energy generation penetration on the power system networks – A review. Technology and Economics of Smart Grids and Sustainable Energy, 6(1), 25. https://doi.org/10.1007/s40866-021-00123-w
Search via ReFindit
Mojumder, M. R. H., Ahmed Antara, F., Hasanuzzaman, M., Alamri, B., & Alsharef, M. (2022). Electric vehicle-to-grid (V2G) technologies: Impact on the power grid and battery. Sustainability, 14(21), 13856. https://doi.org/10.3390/su142113856
Search via ReFindit
Mongird, K., Viswanathan, V., Balducci, P., Alam, J., Fotedar, V., Koritarov, V., & Hadjerioua, B. (2020). An evaluation of energy storage cost and performance characteristics. Energies, 13(13), 3307. https://doi.org/10.3390/en13133307
Search via ReFindit
Nyamathulla, S., & Dhanamjayulu, C. (2024). A review of battery energy storage systems and advanced battery management system for different applications: Challenges and recommendations. Journal of Energy Storage, 86, 111179. https://doi.org/10.1016/j.est.2024.111179
Search via ReFindit
Oyekale, J., Petrollese, M., Tola, V., & Cau, G. (2020). Impacts of renewable energy resources on effectiveness of grid-integrated systems: Succinct review of current challenges and potential solution strategies. Energies, 13(18), 4856. https://doi.org/10.3390/en13184856
Search via ReFindit
Petrov, M. M., Modestov, A. D., Konev, D. V., Antipov, A. E., Loktionov, P. A., Pichugov, R. D., Kartashova, N. V., Glazkov, A. T., Abunaeva, L. Z., Andreev, V. N., & Vorotyntsev, M. A. (2021). Redox flow batteries: role in modern electric power industry and comparative characteristics of the main types. Russian Chemical Reviews, 90(6), 677–702. https://doi.org/10.1070/rcr4987
Search via ReFindit
Pommeret, A., & Schubert, K. (2022). Optimal energy transition with variable and intermittent renewable electricity generation. Journal of Economic Dynamics and Control, 134, 104273. https://doi.org/10.1016/j.jedc.2021.104273
Search via ReFindit
Rahman, M. M., Oni, A. O., Gemechu, E., & Kumar, A. (2020). Assessment of energy storage technologies: A review. Energy Conversion and Management, 223, 113295. https://doi.org/10.1016/j.enconman.2020.113295
Search via ReFindit
Rajamand, S. (2022). Analysis of effect of physical parameters on the performance of lead acid battery as efficient storage unit in power systems using new finite-element-method-based model. Journal of Energy Storage, 47, 103620. https://doi.org/10.1016/j.est.2021.103620
Search via ReFindit
Ravada, B. R., Tummuru, N. R., & Ande, B. N. L. (2021). Photovoltaic-Wind and Hybrid Energy Storage Integrated Multisource Converter Configuration-Based Grid-Interactive Microgrid. IEEE Transactions on Industrial Electronics, 68(5), 4004–4013. https://doi.org/10.1109/tie.2020.2984437
Search via ReFindit
Sahoo, M., & Sethi, N. (2021). The intermittent effects of renewable energy on ecological footprint: Evidence from developing countries. Environmental Science and Pollution Research, 28(40), 56401–56417. https://doi.org/10.1007/s11356-021-14600-3
Search via ReFindit
Shafique, M., Akbar, A., Rafiq, M., Azam, A., & Luo, X. (2023). Global material flow analysis of end-of-life of lithium nickel manganese cobalt oxide batteries from battery electric vehicles. Waste Management & Research: The Journal for a Sustainable Circular Economy, 41(2), 376–388. https://doi.org/10.1177/0734242X221127175
Search via ReFindit
Shazon, M. N. H., & Jawad, A. (2022). Frequency control challenges and potential countermeasures in future low-inertia power systems: A review. Energy Reports, 8, 6191–6219. https://doi.org/10.1016/j.egyr.2022.04.063
Search via ReFindit
Shi, Z., Yao, W., Li, Z., Zeng, L., Zhao, Y., Zhang, R., Tang, Y., & Wen, J. (2020). Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions. Applied Energy, 278, 115733. https://doi.org/10.1016/j.apenergy.2020.115733
Search via ReFindit
Siti, M. W., Mbungu, N. T., Tungadio, D. H., Banza, B. B., & Ngoma, L. (2022). Application of load frequency control method to a multi-microgrid with energy storage system. Journal of Energy Storage, 52, 104629. https://doi.org/10.1016/j.est.2022.104629
Search via ReFindit
Tahir, M. F., Haoyong, C., & Guangze, H. (2021). A comprehensive review of 4E analysis of thermal power plants, intermittent renewable energy and integrated energy systems. Energy Reports, 7, 3517–3534. https://doi.org/10.1016/j.egyr.2021.06.006
Search via ReFindit
Tan, K. M., Babu, T. S., Ramachandaramurthy, V. K., Kasinathan, P., Solanki, S. G., & Raveendran, S. K. (2021). Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. Journal of Energy Storage, 39, 102591. https://doi.org/10.1016/j.est.2021.102591
Search via ReFindit
Vasant Kumar, R., & Sarakonsri, T. (2023). A Review of Materials and Chemistry for Secondary Batteries. In R. Kumar, K. Aifantis, & P. Hu (Eds.), Rechargeable Ion Batteries (1st ed., pp. 49–81). Wiley. https://doi.org/10.1002/9783527836703.ch3
Search via ReFindit
Wen, J., Zhao, D., & Zhang, C. (2020). An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency. Renewable Energy, 162, 1629–1648. https://doi.org/10.1016/j.renene.2020.09.055
Search via ReFindit
Xiong, R., Pan, Y., Shen, W., Li, H., & Sun, F. (2020). Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives. Renewable and Sustainable Energy Reviews, 131, 110048. https://doi.org/10.1016/j.rser.2020.110048
Search via ReFindit
Xu, X. (2024). Application and development of lead-carbon battery in electric energy storage system. Eighth International Conference on Energy System, Electricity, and Power (ESEP 2023), 137. https://doi.org/10.1117/12.3024374
Search via ReFindit
Yang, Y., Bremner, S., Menictas, C., & Kay, M. (2022). Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 167, 112671. https://doi.org/10.1016/j.rser.2022.112671
Search via ReFindit
Zhang, C., Yuan, Z., & Li, X. (2024). Designing Better Flow Batteries: An Overview on Fifty Years’ Research. ACS Energy Letters, 9(7), 3456–3473. https://doi.org/10.1021/acsenergylett.4c00773
Search via ReFindit
Zhang, L., Feng, R., Wang, W., & Yu, G. (2022). Emerging chemistries and molecular designs for flow batteries. Nature Reviews Chemistry, 6(8), 524–543. https://doi.org/10.1038/s41570-022-00394-6
Search via ReFindit
Zhang, S., Andreas, N. S., Li, R., Zhang, N., Sun, C., Lu, D., Gao, T., Chen, L., & Fan, X. (2022). Mitigating irreversible capacity loss for higher-energy lithium batteries. Energy Storage Materials, 48, 44–73. https://doi.org/10.1016/j.ensm.2022.03.004
Search via ReFindit
Zhang, Z., Ding, T., Zhou, Q., Sun, Y., Qu, M., Zeng, Z., Ju, Y., Li, L., Wang, K., & Chi, F. (2021). A review of technologies and applications on versatile energy storage systems. Renewable and Sustainable Energy Reviews, 148, 111263. https://doi.org/10.1016/j.rser.2021.111263
Search via ReFindit
Zhao, S., Guo, Z., Yan, K., Wan, S., He, F., Sun, B., & Wang, G. (2021). Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials. Energy Storage Materials, 34, 716–734. https://doi.org/10.1016/j.ensm.2020.11.008
Search via ReFindit