ESC
Web of Science
Entrepreneurship and Sustainability Issues Open Access Q1
Scopus - coverage starting with 2017 material
Received: 2018-10-16  |  Accepted: 2019-01-29  |  Published: 2019-03-30

Title

Using quantitative methods to identify insecurity due to unusual business operations


Abstract

Financial institutions are the first vertical level in the fight against money laundering and to improve security. Therefore, it is essential that tools are available to enable effective detection and analysis of suspicious transactions, or unusual business operations. These, in line with the legislative requirements, report to responsible entities - FIUs representing the second vertical plane in the fight against money laundering. However, special software tools are available for obligated persons, especially for financial institutions that carry out tens of millions of financial transactions a day. These can trigger the alert to most unusual operations. The software automatically creates customer profiles, including expected behavior and executed transactions. Using advanced statistical analyses, it identifies unusual business operations, i.e. financial transactions significantly different from those carried out in the past. It is very useful to apply software support in form of electronic detection of indicators of legalization of crime proceeds. However, the output of such support software requires a more detailed and demanding investigation of the nature of operation and is based on the use of special algorithms based on mathematical and statistical methods. The software builds on the results of scientific research.


Keywords

security, unusual business operations, crime, money laundering, corruption, legal acts


JEL classifications

E26 , E42 , G21


URI

http://jssidoi.org/jesi/article/272


DOI


Pages

1101-1112


Funding


This is an open access issue and all published articles are licensed under a
Creative Commons Attribution 4.0 International License

Authors

Korauš, Antonín
Academy of the Police Force in Bratislava, Bratislava, Slovakia https://www.akademiapz.sk
Articles by this author in: CrossRef |  Google Scholar

Gombár, Miroslav
University of Prešov, Prešov, Slovakia http://www.unipo.sk
Articles by this author in: CrossRef |  Google Scholar

Kelemen, Pavel
University of Prešov, Prešov, Slovakia http://www.unipo.sk
Articles by this author in: CrossRef |  Google Scholar

Backa, Stanislav
University of Prešov, Prešov, Slovakia http://www.unipo.sk
Articles by this author in: CrossRef |  Google Scholar

Journal title

Entrepreneurship and Sustainability Issues

Volume

6


Number

3


Issue date

March 2019


Issue DOI


ISSN

ISSN 2345-0282 (online)


Publisher

VšĮ Entrepreneurship and Sustainability Center, Vilnius, Lithuania

Cited

Google Scholar

Article views & downloads

HTML views: 1115  |  PDF downloads: 451

References


Angiulli, F.; & Pizzuti, C. 2002. Fast outlier detection in high dimensional spaces. In: Proceedings of the Sixth European Conference on the Principles of Data Mining and Knowledge Discovery, 15-26, August 19-23 Springer-Verlag London, UK, ISBN 3-540-44037-2

Search via ReFindit


Bay, S.; Kumaraswamy, K.; Anderle, M. G.; Kumar, R.; & Steier, D. M. 2006. Large Scale Detection of Irregularities in Accounting Data. ICDM '06. Sixth International Conference on Data Mining, Hong Kong, pp.75-86. Dec. 18 to Dec. 22, ISSN 1550-4786/ISBN: 0-7695-2701-9

Search via ReFindit


Bell, T.B.; & Carcello, J.V. 2000. A Decision Aid for Assessing the Likelihood of Fraudulent Financial Reporting. Auditing: A Journal of Practice and Theory, 1: 169-184 https://doi.org/10.2308/aud.2000.19.1.169

Search via ReFindit


Bolton, R.J.; & Hand, D.J. 2002. Statistical fraud detection: A review. Statistical Science, 17(3): 235-249, Published by: Institute of Mathematical Statistics https://www.jstor.org/stable/3182784

Search via ReFindit


Dobrovič, J.; Gombár, M.; & Benková, E. (2017). Sustainable development activities aimed at combating tax evasion in Slovakia. Journal of Security and Sustainability Issues, 6(4): 761-772. https://doi.org/10.9770/jssi.2017.6.4(19)

Search via ReFindit


Durtschi, C.; Hillison, W.; & Pacini, C. (2004). The Effective use of Benford´s law to assist in detecting fraud in accounting data. Journal of Forensic Accounting, 1524-5586(5): 17-34, © 2004 R.T. Edwards, Inc. Printed in U.S.A. https://pdfs.semanticscholar.org/1020/696451732ce203b219c19fdc31ef1ab8d8c8.pdf

Search via ReFindit


Estévez, P.; Held, C.; & Perez, C. (2006). Subscription fraud prevention in telecommunications using fuzzy rules and neural networks. Expert Systems with Applications, 31: 337-344 https://doi.org/10.1016/eswa.2005:09.028

Search via ReFindit


Ezawa, K.J.; & Norton, S.W. (1996). Constructing Bayesian networks to predict uncollectible telecommunications accounts. IEEE Expert, 11 (5): 45-51 https://doi.org/10.1109/64.539016

Search via ReFindit


Fu, X.; Xiong, Z.; & Peng, B. (2012). A research on internet anti-money laundering technologies based on distributed smart agents. In 2012 7th International Conference on System of Systems Engineering (SoSE). Genova, Italy, July 16-19, 2012. IEEE 2012, ISBN 978-1-4673-2974-3

Search via ReFindit


Gao, Z; & Ye, M. (2007). A framework for data mining‐based anti‐money laundering research. Journal of Money Laundering Control. 10(2): 170 – 179 http://www.emeraldinsight.com/10.1108/13685200710746875

Search via ReFindit


Gao, Z.; & Ye, M. (2007). Journal of Money Laundering Control. 10(2): 170–179. http://www.emeraldinsight.com/10.1108/13685200710746875

Search via ReFindit


Grancay, M.; Grancay, N.; Drutarovska, J.; & Mura, L. (2015). Gravity model of trade of the Czech and Slovak Republics 1995-2012: How have determinants of trade changed. Politicka Ekonomie, 63(6): 759-777, ISSN 0032 - 3233. https://doi.org/10.18267/j.polek.1025

Search via ReFindit


Hand, D.J.; & Blunt, G. (2001). Prospecting for gems in credit card data. IMA Journal of Management Mathematics, 12: 173-200. https://doi.org/10.1093/imaman/12.2.173

Search via ReFindit


Hawkins, D.M. (1994). The feasible solution algorithm for the minimum covariance determinant estimator in multivariate data, Journal Computational Statistics & Data Analysis, 17(2): 197 – 210 00071-X https://doi.org/10.1016/0167-9473(92)

Search via ReFindit


Hong, S. J.; & Weiss, S. M. (2001). Advances in predictive models for data mining. Pattern Recognition Letters, 22: 55-61 00099-4 https://doi.org/10.1016/S0167-8655(00)

Search via ReFindit


Hung, E.; & Cheung, D.W. (1999). Parallel Algorithm for Mining Outliers in Large Database. http://citeseer.nj.nec.com/hung99parallel.html

Search via ReFindit


Jančíková, E.; & Pásztorová, J. (2018). Strengthened EU Rules to Tackle Money Laundering and Terrorism Financing and their Implementation in Slovak Republic In Staníčková, M., L. Melecký, E. Kovářová and K. Dvoroková (eds.). Proceedings of the 4 th International Conference on European Integration 2018. Ostrava: VŠB - Technical University of Ostrava, 528-536. ISBN 978-80-248-4169-4/ISSN 2571-029X.

Search via ReFindit


Jančíková, E.; & Veselovská, S. (2018). The new Technologies and the Fight against Money Laundering and the Terrorism Financing. In 2nd International Scientific Conference - EMAN 2018 - Economics and Management: How to Cope with Disrupted Times, Ljubljana - Slovenia, March 22 ISBN 978-86-80194-11-0 https://doi.org/10.31410/EMAN.2018.334

Search via ReFindit


Jay, N. R.; & Saxena, A.K.; & Vijaya Subrahmanyam, Best, R.W. (2006). Accounting Fraud – Is it Predictable? International Review of Business Research Papers, the University of Wollongong Australia, ISSN 1832-9543

Search via ReFindit


Jiang, M.F.; Tseng, S.S.; & Su C.M. (2001). Two-phase clustering algorithm for outliers detection, Pattern Recognition Lett. 22: 691–700 00131-8 https://doi.org/10.1016/S0167-8655(00)

Search via ReFindit


Jones, K. (2004). Improving Fraud Risk Assessments through Analytical Procedures. Working Paper, Journal of Accounting Research, 47(5) https://doi.org/10.1111/j.1475-679X.2009.00349.x

Search via ReFindit


Knorr, E.; & Ng, R. (1997). A unified approach for mining outliers. In CASCON '97: Proceedings of the 1997 conference of the Centre for Advanced Studies on Collaborative research, Toronto, Ontario, Canada, KDD, 219–222

Search via ReFindit


Knorr, E.; Ng R.; & Tucakov V. (2000). Distance-based outliers: Algorithms and applications. VLDB Journal: Very Large Data Bases, 8(3–4): 237–253 https://doi.org/110.1007/s007780050006

Search via ReFindit


Knorr, E.M.; & Ng R.T. (1999). Finding intentional knowledge of distance-based outliers. In: Proceedings of the 25th VLDB International Conference on Very Large Data Bases, pp. 211-222, Morgan Kaufmann Publishers Inc. San Francisco, CA, USA ISBN: 1-55860-615-7

Search via ReFindit


Korauš, A.; & Kelemen P. (2018). Protection of persons and property in terms of cybersecurity in Economic, Political and Legal Issues of International Relations 2018. Faculty of International Relations of Univerzity of Economics in Bratislava, 1-2. Juni 2018, Virt, Editor: EKONÓM, 2018, ISBN 978-80-225-4506-8/ISSN 2585-9404

Search via ReFindit


Kosinski, A. S. (1999). A procedure for the detection of multivariate outliers. Computational Statistics and Data Analysis, 29(2): 145-161, 00073-5 https://doi.org/10.1016/S0167-9473(98)

Search via ReFindit


Limba, T.; & Šidlauskas, A. (2018). Secure personal data administration in the social networks: the case of voluntary sharing of personal data on the Facebook. Entrepreneurship and Sustainability Issues 5(3): 528-541. https://doi.org/10.9770/jesi.2018.5.3(9)

Search via ReFindit


Lin, S.; & Chalupsky, H. (2003). Unsupervised Link Discovery in Multi-relational Data via Rarity Analysis. Proceedings of the Third IEEE ICDM International Conference on Data Mining, pp. 171-178, November 19 – 22, IEEE Computer Society Washington, DC, USA, ISBN:0-7695-1978-4

Search via ReFindit


Mamojka, M.; & Müllerová, J. (2016). New methodology for crisis management RM/RA CRAMM and its legal frame. In: Production management and engineering sciences. - Leiden: CRC Press/Balkema, 2016. pp 185-190. ISBN 978-1-138-02856-2.

Search via ReFindit


Mastroleo, G. Facchinetti, G. & Magni, C. A. (2001). A proposal for modeling real options through fuzzy expert system. Proceeding SAC '01 Proceedings of the 2001 ACM symposium on Applied computing, pp. 479-481, Las Vegas, Nevada, USA, ISBN 1-58113-287-5. https://doi.org/10.1145/372202.372422

Search via ReFindit


Matsumara, E.M.; &Tucker, R.R. (1992). Fraud Detection: A Theoretical Foundation. The Accounting Review, 67(4): 753-782.

Search via ReFindit


Müllerová, J. 2016. RM/RA CRAMM as a new risk management method for prevention of ecology disasters, 16th International Multidisciplinary Scientific GeoConference SGEM 2016, SGEM2016 Conference Proceedings, June 28 - July 6, Book 5(1): 607-612. ISBN 978-619-7105-65-0/ISSN 1314-2704

Search via ReFindit


Müllerová, J.; & Mamojka, M. 2017. Legal possibilities of the rescue forces during the emergency event. In: SGEM2017 Conference Proceedings, 29 June-5 July, 17(51): 605-612. ISBN 978-619-7408-08-9/ISSN 1314-2704. https://doi.org/10.5593/sgem2017/51/S20.079

Search via ReFindit


Mura, L.; Daňová, M.; Vavrek, R.; & Dúbravská, M. (2017). Economic freedom – classification of its level and impact on the economic security. AD ALTA, Journal of Interdisciplinary Research, 7 (2): 154 – 157 ISSN/ISBN

Search via ReFindit


Mura, L.; Marchevska, M.; & Dubravska, M. (2018). Slovak Retail Business across Panel Regression Model. Marketing and Management of Innovations, 4: 203-211. http://doi.org/10.21272/mmi.2018.4-18

Search via ReFindit


Ngai, E. W. T.; Hu, Y.; Wong Y. H.; Chen Y.; & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3): 559-569 http://doi.org/10.1016/j.dss.2010.08.006

Search via ReFindit


Nigrini, J.M.; & Mittermaier, L. I. (1997). The Use of Benford's Law as an Aid in Analytical Procedures, Auditing. A Journal of Practice and Theory 16 (Fall)

Search via ReFindit


Nigrini, M. J. (1999). I’ve got your number. Journal of Accountancy, 79–83, https://www.journalofaccountancy.com/issues/1999/may/nigrini.html

Search via ReFindit


Noble, C.; & Cook, D. (2003). Graph-based Anomaly Detection. Proceedings of the ACM Conference on Knowledge Discovery and Data Mining, pp. 631-636, Washington, D.C. ISBN 1-58113-737-0. http://doi.org/10.1145/956750.956831

Search via ReFindit


Pálková M.; Müllerová J.; Novák M.; & Němec V. (2018). Risk and uncertainty assessment of natural disasters. In: SGEM 2018 conference proceedings, 30 June - 9 July 2018 Albena, Bulgaria, Sofia: STEF92 Technology 18 (5.2): pp. 1057-1064. ISSN1314-2704/ISBN 978-619-7408-47-8.

Search via ReFindit


Pálková, M.; Müllerová, J.; Endrizalová E. (2018). Risk management system in Czech Republic. In: SGEM 2018 conference proceedings. 30 June - 9 July 2018 Albena, Bulgaria [print]. Sofia: STEF92 Technology 18(5.2), pp. 1049-1056. ISSN 1314-2704/ISBN 978-619-7408-47-8.

Search via ReFindit


Parkitna, A.; Kamińska, A.; & Pędziwiatr, A. (2016). The impact of external economic factors on the level of the enterprises’ efficiency in Poland in the context of business risk. Acta Oeconomica Universitatis Selye 5 (2): 144 – 158, ISSN 1338-6581

Search via ReFindit


Phua C.; Lee V.; Smith K.; & Gayler R. (2005). A comprehensive survey of data mining - based fraud detection research. http://www.bsys.monash.edu.au/people/cphua/

Search via ReFindit


Ramaswamy, S.; Rastogi, R.; & Shim, K. (2000). Efficient algorithms for mining outliers from large data sets. In: Proceedings of the ACMSIGMOD Conference, pp. 427-438, Dallas, Texas, USA — May 15 – 18. ISBN 1-58113-217-4 http://doi.org/10.1145/342009.335437

Search via ReFindit


Rohit, K. D.; & Patel, D. B. (2015). Review on Detection of Suspicious Transaction in Anti-Money Laundering Using Data Mining Framework. International Journal for Innovative Research in Science and Technology, 1(8): 129-133, ISSN (online): 2349 – 6010 https://pdfs.semanticscholar.org/23a2/3da2dc5956297cc86c8f0f4c58a5e05f0070.pdf

Search via ReFindit


Schneider, F. (2007). Money Laundering: Some Preliminary Empirical Findings. Conference Tackling Money Laundering Laundering_102007.doc http://www.awi.uni-Heidelberg.de/with2/seminar/WS%200708/Schneider_Money%20

Search via ReFindit


Scott, J.; Carrington, P.J. (2011). The SAGE Handbook of Social Network Analysis, Sage Publications Ltd. ISBN 1847873952 9781847873958

Search via ReFindit


Senator, T. E.; Goldberg, H. G.; Wooton, J.; Cottini, M. A.; Khan, A. U.; Klinger, C. D.; & Wong, R. W. (1995). Financial Crimes Enforcement Network AI System (FAIS) Identifying Potential Money Laundering from Reports of Large Cash Transactions. AI magazine, 16(4): 21. From: IAAI-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org) https://www.aaai.org/Papers/IAAI/1995/IAAI95-015.pdf

Search via ReFindit


Shapiro, A. F. (2002). The merging of neural networks, fuzzy logic, and genetic algorithms. Insurance: Mathematics and Economics, 31: 115–131 00124-5 https://doi.org/10.1016/S0167-6687(02)

Search via ReFindit


Shetty, J.; & Adibi, J. (2005). Discovering Important Nodes through Graph Entropy: The Case of Enron Email Database. KDD, Proceedings of the 3rd international workshop on Link discovery, pp. 74-81, Chicago, ISBN 1-59593-215-1 https://doi.org/10.1145/1134271.1134282

Search via ReFindit


Šišulák, S. (2017). Userfocus - tool for criminality control of social networks at both the local and international level. Entrepreneurship and Sustainability Issues 5(2): 297-314. https://doi.org/10.9770/jesi.2017.5.2(10)

Search via ReFindit


Sohn, S. Y.; Moon T. H.; & Kim, S. (2005). Improved technology scoring model for credit guarantee fund. In Journal Expert Systems with Applications. An International Journal, 28(2): 327-331. https://doi.org/10.1016/j.eswa.2004.10.012

Search via ReFindit


Spathis, C.T. (2002). Detecting false financial statements using published data: some evidence from Greece, Managerial Auditing Journal, 17(4): 179-191, https://doi.org/10.1108/02686900210424321

Search via ReFindit


Straková, J.; Pártlová, P.; & Váchal, J. (2017). Business management in new global economy. Acta Oeconomica Universitatis Selye 6 (1): 155 – 166. ISSN 1338-6581

Search via ReFindit


Sudjianto A.; Nair S.; Yuan M.; Zhang A.; Kern D.; & Cela-Díaz F. (2010). Statistical methods for fighting financial crimes. Technometrics 52(1): 5-19. https://doi.org/10.1198/TECH.2010.07032

Search via ReFindit


Taniguchi, M.; Haft M.; Hollmen J.; & Tresp V. (1998). Fraud detection in communication networks using neural and probabilistic methods. In Proceedings of the 1998 IEEE International Conference in Acoustics, Speech and Signal Processing, 2: 1241–1244. https://doi.org/10.1109/ICASSP.1998.675496

Search via ReFindit


Veselovská, S.; Korauš, A.; & Polák, J. (2018). Money Laundering and Legalization of Proceeds of Criminal Activity, Second International Scientific Conference on Economics and Management - EMAN 2018, March 22, Ljubljana, Slovenia, Printed by: All in One Print Center, Belgrade, 2018, ISBN 978-86-80194-11-0 https://doi.org/10.31410/EMAN.2018

Search via ReFindit


Walker, J. (1998). Modelling Global Money Laundering Flows – some findings. http://members.ozemail.com.au/~john.walker/crimetrendsanalysis/mlmethod.htm

Search via ReFindit


Weatherford, M. (2002). Mining for fraud. IEEE Intelligent Systems, 17: 4-6. MIS.2002.1024744 https://doi.org/10.1109/

Search via ReFindit


Williams G.; & Huang Z. (1997). Mining the knowledge mine: The hot spots methodology for mining large real world databases. In Abdul Sattar, editor, Advanced Topics in Artificial Intelligence, pp. 340–348, November 30 - December 04, Springer-Verlag London, UK, ISBN 3-540-63797-4

Search via ReFindit


Xu, J; & Chen, H. (2005). Criminal network analysis and visualization. Communications of the ACM, 48(6): 101-108 https://doi.org/10.1145/1064830.1064834

Search via ReFindit


Yamanishi, K.; Takeuchi, J.; Williams, G. & Milne, P. (2000). On-line unsupervised outlier detection using -nite mixtures with discounting learning algorithms. Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 320–324, Boston, Massachusetts, USA, ISBN 1-58113-233-6 https://doi.org/10.1145/347090.347160

Search via ReFindit


Yang Y., Lian B., Li L., Chen C., & Li P. (2014). DBSCAN clustering algorithm applied to identify suspicious financial transactions. In Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), International Conference, 60-65, ISBN 978-1-4799-6236-5. https://doi.org/10.1109/CyberC.2014.89

Search via ReFindit


York, D. (2000). Auditing technique – Benford´s law. Accountancy, 1283: 126

Search via ReFindit


Zhang, T.; Ramakrishnan, R.; & Livny, M. (1996). An efficient data clustering method for very large databases. In Proc. ACM SIGMOD, pp. 103–114, Montreal, Quebec, Canada, ISBN 0-89791-794-4 https://doi.org/10.1145/233269.233324

Search via ReFindit


Zhu, T. (2006). An outlier detection model based on cross datasets comparison for financial surveillance. In 2006 IEEE Asia-Pacific Conference on Services Computing (APSCC'06), pp. 601-604, ISBN 0-7695-2751-5 https://doi.org/10.1109/APSCC.2006.33

Search via ReFindit